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Technicalities & admin

Send the solutions to kmita@ibspan.waw.pl. Send two files: Rmd and html, the latter one
being built by Rmarkdown. Name the files with the indices: index1_index2_index3 (or 1
index, or 2 indices, depending on the size of your group). Deadline: 4.12.2023 23:59.
Note: the deadline for Ex. 4, semi-supervised part may be longer if you declare
willingness to tackle this problem.

we will use Rmd (R Markdown) from now on,
install devtools and try to install the ssfclust library.
devtools::install_github("ITPsychiatry/ssfclust@refactor")
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Fuzzy C-Means

The roots of Fuzzy C-Means

[Bez] in Chapter 2:
p. 18, defines hard 2-partition,
p. 20, defines fuzzy 2-partition.

Fuzzy C-Means, because the direct inspiration is taken from the fuzzy set theory to represent
the degree of belonging of object x to cluster k with a characteristic function µk(x) ∈ [0, 1].

The “sum-to-one” condition, treated as de facto probabilistic constraint, is discussed on the
above pages. See also [RBK].
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Fuzzy C-Means

Hard 2-partition

Note the distinction between set-theoretic and functional-theoretic approaches. In fact, ujk is
short for uk(xj).

Figure: [Bez, p. 18].

K. Kmita RW 6 / 40



Fuzzy C-Means

Fuzzy 2-partition

Figure: [Bez, p. 20]
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Fuzzy C-Means

Fuzzy clustering - finding good c−partitions

Clustering: partitioning data set X into c clusters that contain observations similar to
each other and dissimilar to the rest of the data,

Fuzzy clustering: uses a soft assignment of each observation to each cluster
(a membership degree ujk) that is grounded in fuzzy set theory.

Fuzzy c-partition space1

Let X be any finite set, c a number of clusters 2 ≤ c < N, WNc a set of real matrices of N × c
dimension. Then a fuzzy c−partition space for X is the set

Mfc =
{
U ∈ WNc | ujk ∈ [0, 1];

c∑
k=1

ujk = 1 ∀j ; 0 <

N∑
j=1

ujk < n ∀k
}

(1)

1James C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms.
Springer US
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Fuzzy C-Means

Fuzzy clustering - finding good c−partitions

The classical Fuzzy C-Means [Bez] is based on a following objective function

QFCM(U,V ;X ,m) =
c∑

k=1

N∑
j=1

umjk · d2
jk . (2)

Let us recall that c denotes a fixed number of clusters. Note that the fuzzifier m is the only
hyperparameter of the algorithm, so Θ = {m}.
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Fuzzy C-Means

The minimization problem to solve is

arg min
U,V

c∑
k=1

N∑
j=1

u2
jk · d2

jk (3a)

s.t.
c∑

k=1

ujk = 1 ∀j = 1, . . . ,N, (3b)

0 <

N∑
j=1

ujk < N ∀k = 1, . . . , c, (3c)

ujk ∈ [0, 1]. (3d)
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Fuzzy C-Means

The formulae for optimal ûjk and v̂k are

ûjk =
1∑c

g=1(d
2
jk/d

2
jg )

= ejk (the data evidence), (4a)

v̂k =

∑N
j=1 u

2
jk · xj∑N

j=1 u
2
jk

. (4b)

Why did we call the outcome in Eq. 4a the data evidence?
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Fuzzy C-Means

In general, finding optimal (U⋆,V ⋆) is intractable and approximation algorithms are often used.
A typical optimization procedure for fuzzy clustering is described in [Bez]. It relies on fixing one
variable and optimizing the other at a time. Such an iterative procedure is performed until a
convergence criterion is met. The formulae for two variables Û and V̂ are obtained by studying
first-order necessary conditions for a global minimizer (U⋆,V ⋆) of a respective objective
function. Note that this minimization procedure yields equations for standalone ûjk or t̂jk
variables (see [Bez] and [KK] for details).
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Fuzzy C-Means

The generic algorithm can be summarized in four steps:
1 Initiate matrix U(0) e.g. by random sampling. Set the counter l = 1.
2 Calculate prototypes V (l) using the formula for v̂k and values from U(l−1).
3 Update matrix U(l) using the formula for ûjk and values from V (l).
4 Compare U(l) to U(l−1) in a chosen matrix norm and stop if the difference is less than a

chosen convergence criterion. Otherwise, increase the counter l by 1 and go back to step
S2.
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Possibilistic C-Means

QPCM(T ,V ;X ,Θ) =
c∑

k=1

N∑
j=1

tmjk d
2
jk +

c∑
k=1

γk

N∑
j=1

(1 − tjk)
m. (5)

T = [tjk ] is a typicalities matrix. QPCM is parametrized by Θ = {m, Γ}. Vector
Γ = (γ1, . . . , γc)

T contains cluster-specific scalars γk > 0.
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Possibilistic C-Means

The minimization problem becomes

arg min
T ,V

QPCM(T ,V ;X , Γ) (6a)

s.t. 0 <

N∑
j=1

tjk < N ∀k = 1, . . . , c , (6b)

tjk ∈ [0, 1]. (6c)
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Possibilistic C-Means

Krishnapuram and Keller [KK] prove that the optimal solution of the minimization problem in
(6) is

t̂jk =
1

1 +
(
d2
jk/γk

) =
γk

γk + d2
jk

, (7)

and the optimal value for kth cluster’s prototype is

v̂k =

∑N
j=1 t

2
jk · xj∑N

j=1 t
2
jk

. (8)
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Possibilistic C-Means

How does PCM differs from FCM in terms of data evidence?

How to set and what is the meaning of γk? Read R. Krishnapuram and J.M. Keller. A
possibilistic approach to clustering.
1(2):98–110

Why “Nothing about PCM is possibilistic in the true sense of possibility theory” [RBK,
Sec. 4]? What is the one-line summary of the key aspect of the possibility theory?
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Exercises

Ex. 1 [0-2 pkt.]

Recreate dataset from Figure 1a in R. Krishnapuram and J.M. Keller. A possibilistic approach
to clustering. We will refer to it as to diamonds

Apply Fuzzy C-Means and Possibilistic C-Means to reproduce the results of the authors and
confirm their conclusions.
Visualize the distribution of memberships with appropriate visualization techniques.
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Exercises

Ex. 2 [0-2 pkt.]

One can choose different distances than Euclidean distance. In particular, we can use the
Mahalanobis distance to avoid spherical clusters produced by the algorithms using Euclidean
distance.

by what name goes the appropriate fuzzy clustering model? (Last names of the authors of
the paper),
use FCM either or PCM with Euclidean and Mahalanobis distances (so 2 models in tota:
FCM-Euclid & FCM-Mah, or PCM-Euclid and PCM-Mah) to experiment with the
diamonds dataset. Do the conclusions change?

K. Kmita RW 21 / 40



Exercises

Ex. 3 [0-1 pkt.]

Choose one option from the list below and compare the appropriate model with the previously
fitted models on the dataset diamonds:

yet another distance: kernelized methods,
yet another fuzzy model: a hybrid of PCM/FCM, evidential clustering.
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Semi-Supervised Fuzzy C-Means Fuzzy clustering and c-partitions

Fuzzy clustering - finding good c−partitions

Clustering: partitioning data set X into c clusters that contain observations similar to
each other and dissimilar to the rest of the data,

Fuzzy clustering: uses a soft assignment of each observation to each cluster
(a membership degree ujk) that is grounded in fuzzy set theory.

Fuzzy c-partition space2

Let X be any finite set, c a number of clusters 2 ≤ c < N, WNc a set of real matrices of N × c
dimension. Then a fuzzy c−partition space for X is the set

Mfc =
{
U ∈ WNc | ujk ∈ [0, 1];

c∑
k=1

ujk = 1 ∀j ; 0 <

N∑
j=1

ujk < n ∀k
}

(9)

1James C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms.
Springer US
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Semi-Supervised Fuzzy C-Means Fuzzy clustering and c-partitions

An illustrative example of a fuzzy 2-partition

X = {x1, x2, x3}, xj ∈ Rp.

j = 1, . . . , 3; N = 3.

k ∈ {1, 2}; c = 2.

A possible fuzzy 2−partition:

U =

k = 1 k = 2( )x1 0.98 0.02
x2 0.6 0.4
x3 0.06 0.94

Observation x1 belongs strongly to cluster 1, observation x3 belongs strongly to cluster 2, while
observation x2 seems to be a “hybrid”: it belongs to both clusters to similar degree.
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Semi-Supervised Fuzzy C-Means Fuzzy clustering and c-partitions

Struggling with imagining a “hybrid”?

A classical example from [Bez]:
x1: a peach,
x3: a plum,
x2: a nectarine, supposedly a hybrid of a peach and a plum.

Supposedly...

because it turns out to be a controversial topic, e.g.
http://www.bctreefruits.com/fruits/other-fruits/detail/0/Nectarines/ state
“There is some misconception that nectarines are a cross between a peach and a plum, but
this is not the case. They’re simply a fuzzless peach.”

K. Kmita RW 26 / 40
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Semi-Supervised Fuzzy C-Means Fuzzy clustering and c-partitions

Unreal, but proper hybrid

x1: a butterfly,
x3: an elephant,
x2: a butterphant
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Semi-Supervised Fuzzy C-Means Fuzzy clustering and c-partitions

Unreal, but proper hybrid

x1: a butterfly,
x3: an elephant,
x2: a butterphant

Figure: A butterphant. Source:
https:
//www.boredpanda.com/
animals-hybrids-photoshop/
?media_id=321587
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Semi-Supervised Fuzzy C-Means Fuzzy clustering and c-partitions

Introducing partial supervision

Partial supervision (a type of semi-supervision): only M observations out of all available N data
(M < N) are labeled, the rest remains unsupervised.

indices
index j denotes all available observations, i.e. j = 1, . . . ,N,
index i denotes all supervised observations, i.e. i = 1, . . .M; M < N.
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Semi-Supervised Fuzzy C-Means Semi-Supervised Fuzzy C-Means

Semi-supervised fuzzy clustering

Semi-Supervised Learning (SSL)3: labels yj ∈ Y are available for a part of observations M
out of all N observations (M < N),
an arbitrary 1-1 mapping must be established between clusters (columns of U) and classes
(columns of F ).

U =

k = 1 k = 2 x1 u11 u12

x2 u21 u22
x3 u31 u32

F =

k = 1 k = 2 s(i) x1 1 0 s(1) = 1
x2 0 0
x3 0 1 s(3) = 2

Function s(i) retrieves the index of the class (a column in F ) associated with i-th supervised
observation.

2Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien, editors. Semi-Supervised Learning.
Adaptive Computation and Machine Learning. MIT Press
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Semi-Supervised Fuzzy C-Means Semi-Supervised Fuzzy C-Means

Semi-Supervised Fuzzy C-Means (SSFCMeans) model

Objective function J based on [PW]4 introducing partial supervision

JSSFCM =
c∑

k=1

N∑
j=1

u2
jk · d2(xj , vk) +α

c∑
k=1

N∑
j=1

(ujk − bj fjk)
2︸ ︷︷ ︸

penalization

·d2(xj , vk).

ujk ∈ [0, 1] is a membership degree
djk = d(xj , vk) is a Euclidean distance between jth observation and kth prototype vk
(k-th cluster is associated with its prototype vk ∈ Rp),

F = [fjk ] is a matrix introducing partial supervision with binary entries fjk ∈ {0, 1},
bj ∈ {0, 1} is an indicator variable equal to 1 iff xj is labeled,
α ≥ 0 is a scaling factor that weighs the strength of partial supervision.

3W. Pedrycz and J. Waletzky. Fuzzy clustering with partial supervision.
27(5):787–795
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Semi-Supervised Fuzzy C-Means Semi-Supervised Fuzzy C-Means

Finding optimal c-partitions

Notation:
X = [xj ], xj ∈ Rp

U ∈ Mfc : a memberships matrix,
V ∈ Wcp: a prototypes matrix (V = [vk ]),
Θ: a set of hyper-parameters.

Task:

(U⋆,V ⋆) = arg min
U,V

J(U,V ;X ,Θ), (10)

where objective function J quantifies a notion of similarity between observations and prototypes
(typically, using a distance function such as e.g. Euclidean distance).
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Semi-Supervised Fuzzy C-Means Semi-Supervised Fuzzy C-Means

Optimal Û

An iterative optimization algorithm is frequently performed. Optimal Û = [ûjk ] matrix is
obtained by considering first-order necessary conditions of a global minimizer, leading to

ûjk =
1

1 + α
·
(

1 + α ·
(
1 − bj

∑c
s=1 fjs

)∑c
s=1
(
d2
jk/d

2
js

) + αfjkbj

)
. (11)

In a case of a supervised observation i and its membership degree to the supervised cluster s(i)

ûi ,s(i) =
1

1 + α
· 1∑c

s=1
(
d2
ik/d

2
is

) + α

1 + α
. (12)
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Semi-Supervised Fuzzy C-Means The non-linear impact of α

Interpretations of the scaling factor α

objective function
c∑

k=1

N∑
j=1

u2
jkd

2
jk +α

c∑
k=1

N∑
j=1

(ujk − bj fjk)
2︸ ︷︷ ︸

penalization

d2
jk .

optimal membership ûi ,s(i)
1

1+α · 1∑c
s=1

(
d2
ik/d

2
is

) + α

1 + α︸ ︷︷ ︸
ALB

[PW, p. 788] “a scaling factor whose role is to maintain a balance between the
supervised and unsupervised component”,
“The scaling factor α quantifies the impact of partial supervision as IPS(α) = α

1+α , and
establishes an Absolute Lower Bound for a membership of a supervised observation to the
supervised cluster ui ,s(i) > IPS(α)”5.

4K. Kmita, K. Kaczmarek-Majer, O. Hryniewicz, Explainable Impact of Partial Supervision in
Semi-Supervised Fuzzy Clustering, manuscript under review
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Semi-Supervised Fuzzy C-Means The non-linear impact of α

What about the prototypes?

Optimizing JSSFCM(V ) shall raise

vk =

∑N
j=1

(
u2
jk + bj · α · (ujk − fjk)

2
)
· xj∑N

j=1

(
u2
jk + bj · α · (ujk − fjk)

2
) , (13)

but in the literature frequently the non-α-impacted prototypes are used:

v̂k =

∑N
j=1 t

2
jk · xj∑N

j=1 t
2
jk

. (14)
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Semi-Supervised Fuzzy C-Means The non-linear impact of α

Ex. 1 [0-2 pkt.]

Recreate data (and figure) from Fig. 2 in the followign publication: Violaine Antoine, Jose A.

Guerrero, and Gerardo Romero. Possibilistic fuzzy c-means with partial supervision.
449:162–186.

Note the authors open-sourced the computational programs to recreate this data.

[AGR, p. 172]. describe their idea to apply partial superivsion to the dataset. Reconstruct their

idea, i.e., enhance your dataset with partial supervision.

K. Kmita RW 35 / 40



Semi-Supervised Fuzzy C-Means The non-linear impact of α

Ex. 2 [0-2 pkt.]

Run respective SSFCM model from ssfclust library with these settings:
α = 1,
impact of partial superivsion increased by 50% (by the factor of 1.5) w.r.t α = 1,
impact of partial supervision decreased by 50% (by the factor of 0.5) w.r.t α = 1.

Plot the results of the respective models, similarly as in the Figure 3a in [AGR].
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Semi-Supervised Fuzzy C-Means The non-linear impact of α

Ex. 3 [0-1 pkt.]

Answer the questions:
what distance function is used in ssfclust?
what formula for prototypes is used in the library (the non-α FCM-like, or the α-corrected
one)?
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Semi-Supervised Fuzzy C-Means The non-linear impact of α

Ex. 4 [0-1 pkt.]

Provide an idea to include Mahalanobis distance in ssfclust. Refer to [PW] for the formulae
to include Mahalanobis distance.
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Semi-Supervised Fuzzy C-Means The non-linear impact of α
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