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Abstract—Semi-supervised learning has gained great interest
because of its ability to combine unlabeled data with – potentially
few – labeled observations in a training process. However, in some
application contexts, one can question whether all available labels
are equally valid. For example, in the context of bipolar disorder
(BD) remote monitoring, a common practice is to extrapolate the
psychiatrist’s assessment onto some fixed time window surround-
ing the visit, the so-called ground truth period. In consequence,
all data from this period are labeled with the same category.
Such an approach may potentially result in misguided supervision
affecting the model’s performance. In this paper, we consider
the problem of label uncertainty, assuming that the labels are
crisp, but they may be assigned to particular observations with
varying confidence. We propose a novel method called Confidence
Path Regularization (CPR) that incorporates this uncertainty
into the fuzzy c-means semi-supervised learning. The proposed
CPR approach is a novel method for automatic, data-driven
handling of label uncertainty. We achieve it by estimating the
confidence factor for each labeled observation. In addition, CPR
allows for the exploration of potential class-specific patterns in
the adjusted confidence. The proposed method is illustrated with
experiments on partially labeled data about speech characteristics
collected from smartphone application for BD monitoring. In this
particular applied scenario, we also use additional contextual
data to improve the construction of confidence paths. It is shown
that the proposed CPR approach enables to reflect the varying
confidence in labels as compared with the nominal approach
which assigns the majority of observations to the same class
associated with relevant ground truth period.

Index Terms—semi-supervised learning, prediction, label un-
certainty, weak learning, regularization, bipolar disorder, process
monitoring, acoustic features, smartphones, intelligent data anal-
ysis

I. INTRODUCTION

Semi-supervised learning has been increasingly attracting
interest from researchers in recent years. It is a setting classi-

fied between two well-established fields of machine learning:
1) unsupervised learning, where one tries to extract infor-
mation from unlabeled samples, and 2) supervised learning,
where a goal is to infer a predictive model from labeled
observations. Significant progress has been made in the devel-
opment of learning schemes that leverage unlabeled samples
by incorporating additional supervised data into the learning
process. A common approach is to enhance clustering or fuzzy
clustering with partial supervision [1], [2], leading to flexible
semi-supervised approaches that have proven very useful in a
wide range of practical tasks, e.g. in medical decision support
[3], [4]. Adding even a relatively small amount of labeled data
may improve the results of clustering.

In general, semi-supervised learning can be regarded as a
particular case of a more general learning scheme known as
weak-supervised learning [5], where supervision of a training
instance is expressed as a vector which elements indicate the
membership of the instance for each semantic category. This
turns out to be useful when a crisp association of an instance
to the class is difficult due to uncertainty and ambiguity.

Many motivating examples for this research come from the
medical domain. In particular, in this work, we focus on the
mental illness remote monitoring where it is assumed that the
remotely collected behavioral data (e.g. voice characteristics
from patient’s phone calls) are assigned a label that is extrap-
olated from psychiatric assessment obtained during a medical
appointment.

This label is extrapolated onto the so-called ground truth
period, the fixed time window surrounding the visit (e.g.
from 7 days before the visit up to 2 days after the visit).
Nonetheless, even if we can assume that the majority of phone
calls from the ground truth period indeed share some common
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characteristics of that disease phase, we do not have labels
directly associated with these supervised calls. Uncertainty
naturally arises about whether all calls should be equally
treated as supervised to the same extent. In this paper, we
focus on such uncertainty about the validity of the crisp labels.

To cope with label uncertainty, we propose a novel semi-
supervised clustering method that takes into account uncer-
tainty related to the labels or the labeling process itself.
This method, called Confidence Path Regularization (CPR),
extends the existing semi-supervised fuzzy c-means clustering
algorithm by enabling a data-driven assessment of certainty
associated with labels. We analyze a case study of bipo-
lar disorder (BD) remote monitoring based on phone calls.
Experimental results show that our CPR method enables
differentiating between phone calls that are highly certain for
the particular label and those that are not.

The structure of the paper is as follows. Section II describes
the related work. Section III describes the main characteristics
of the proposed Confidence Path Regularization approach. In
Section IV, we discuss the obtained experimental results that
illustrate the usefulness of the proposed approach in the BD
application scenario. In Section V, the main conclusions are
stated and future work is outlined.

II. RELATED WORK

Usually, data labeling relies on assigning each point un-
ambiguously to a single class for the purpose of statistical
learning. However, uncertainty in the data labeling regards
different domains and affects automatic analyses. For example,
a movie can be labeled to different genres, or a protein
sequence could be assigned to several structural subcategories.
Such uncertainty is common in many biological and medical
applications [6]. Data annotation is often uncertain due to the
intrinsic subjective nature of the labeling process [7]. More-
over, when different experts are involved to reduce process
subjectivity, intra-observer and inter-observer variability issues
are introduced in the analysis [8], leading to uncertainty.

Most methods, e.g. [9], [10], and literature surveys [8],
[11], [12] interpret uncertain labels as labels corrupted by
noise, stating that the problem is to reduce this noise. Several
recent studies have shown the negative effects of training
deep learning models with noisy annotations [13]. Existing
methods propose to use conditional random fields [14] and
neural networks [15] to achieve high-quality annotations by
correcting the noise in the annotations. Other approaches [16],
[17] apply resampling to the training samples and evaluate
the importance of each sample during the training process by
additional modules in order to obtain a more robust model.

Another approach to overcome the issues caused by noisy
crisp labels is to consider fuzzy or uncertain labels so that
samples are assigned to each label with some membership
degree [18]. Probability and possibility theories are also used
to handle uncertainty from another point of view. Examples
include Bayesian Neural Networks for leveraging uncertain
labels in Chest X-rays in [19] or a multivariate multinomial
mixture model for DNA barcoding [20].

All the above methods assume a fully supervised scenario,
while few papers discuss semi-supervised learning with label
uncertainty. In [6] and [21] overclustering is used to detect
sub-structures of uncertain labels in order to improve classi-
fication through deep learning. Soft labels are used in [22] to
improve two semi-supervised multiple classifier frameworks.
Uncertainty-aware pseudo-labels are proposed in [23], whilst
a semi-supervised support vector regression based on self-
training with label uncertainty is proposed in [24]. Data
uncertainty and semi-supervision adjustments in clustering are
also discussed in [25], where multiple fuzzification coefficients
are applied to implement the semi-supervision component.

In this paper, we go beyond the state-of-the-art and enable
to model the varying confidence in labels within the semi-
supervised scenario of fuzzy c-means.

III. THE PROPOSED CONFIDENCE PATH REGULARIZATION
IN SEMI-SUPERVISED LEARNING

The proposed method builds on the Semi-Supervised Fuzzy
C-Means (SSFCM) algorithm proposed in [2]. Of many ex-
isting approaches to including partial supervision, this method
allows for an intuitive and interpretable way to introduce label
uncertainty. It shall be noted that authors of the original al-
gorithm briefly discuss augmentation of their original method
that we further develop into a wider framework.

The core SSFCM being an extension to the Fuzzy C-
Means (FCM) algorithm aims at grouping observations xj ∈
Rp, j = 1, . . . , N into K clusters c1, . . . , cK . Contrary to hard
clustering algorithms, each observation xj may be allocated
to more than one cluster. This is expressed by membership
values ujk ∈ [0, 1]: the greater the value of ujk, the more
observation xj belongs to k-th cluster.

Partition matrix U = [ujk] must satisfy two conditions:

K∑
k=1

ujk = 1,∀j, (i)

0 <

N∑
j=1

ujk < N, ∀k. (ii)

The optimal allocation of observations is achieved by itera-
tively minimizing objective function J that quantifies distances
between observations and prototypes of the clusters vk ∈ Rp:

J =

K∑
k=1

N∑
j=1

um
jkd

2
jk + α

K∑
k=1

N∑
j=1

(ujk − bjfjk)
md2jk. (1)

Here, djk is the Euclidean distance between an observation
and a cluster prototype, F = [fjk] is a matrix introducing
partial supervision that contains assumed membership values,
bj ∈ {0, 1} is an indicator variable equal to 1 iff xj is
labeled, m is a fuzzification coefficient, and α ≥ 0 is a scalar
weighting the proportional contribution of partial supervision.
As the parameter of the method, α must be provided a priori.
Following [2], we assume:



α =
N∑N
j=1 bj

. (2)

We also restrict fjk ∈ {0, 1} and set m = 2. The latter
is a frequent assumption leading to convenient analytical
properties (see [2]).

Label uncertainty can be incorporated into SSFCM by
means of a confidence factor confj ∈ [0, 1] defined as a level
of confidence assigned to the actual membership grades. Then,
the modified objective function Jc takes the following form:

Jc =

K∑
k=1

N∑
j=1

um
jkd

2
jk + α

K∑
k=1

N∑
j=1

(ujk − bjfjk)
m · confj · d2jk.

(3)
Confidence factor is not a weight itself, but rather an

observation-wise adjustment of α that results in modified
weights αj = α · confj . Making note of that, we further use
only confj notation to reason in terms of label uncertainty.
Note that because of the assumption confj ∈ [0, 1] the
confidence factor can only decrease the impact of a supervised
observation in the objective function Jc (3). We also restrict
that (bj = 0) =⇒ (confj = 0) to include uncertainty only
for the supervised observations. Let us define a new index
i = 1, . . . ,M indexing M supervised observations out of all
N observations. This convention should simplify calculations
that include only the supervised observations. Consequently,
we will denote confidence factors for supervised data instances
as confi.

In practice, one can rarely evaluate uncertainty upfront and
arbitrary assumptions about exact values must be made a pri-
ori. To handle this problem, we introduce the Confidence Path
Regularization (CPR) method to adjust the default confidence
values in an automatic, data-driven way. This novel approach
is parameterized with: a number of regularization passes R, a
strength of each regularization regr ∈ [0, 1], and a weight of
each regularization pass’ outcome wr ∈ N.

The proposed CPR method builds on a regularization as-
sumption that highly certain supervised observations should
be consistently assigned high degrees of membership to the
supervised class by the SSFCM method across varying values
of confidence factor.

We formulate this assumption by calculating conf⋆i , the
adjusted confidence factor calculated from a sequence of R
SSFCM models fitted to the data with decreasing values of
default confi, see (4). In each pass r = 1, . . . , R, confi-
dence factor for every observation confi is multiplied by the
regularization factor regr ∈ [0, 1] before fitting the model.
Membership values of the supervised class obtained from R
models are then weighted by scalars wr. The smaller the
regr, the greater the corresponding wr should be to take
into account the decreased strength of supervision. These
are {regr}r=1,...,R that form confidence regularization path,
and together with weights wr they become parameters of the
method we propose.

The adjusted confidence factor conf⋆i is a result of following
normalization:

conf⋆i =
1∑R

r=1 wr

·
R∑

r=1

ur
i,s(i)wr, (4)

where s(i) is an index of column in F matrix for i−th
observation that contains the ground truth-based label (i.e.
fi,s(i) = 1).

The proposed Semi-supervised Fuzzy C-means with Con-
fidence Path Regularization algorithm is defined as follows:

input: data X,F, α, {confi}, {regr}, {wr}
output: {conf⋆i }
for r ∈ {1, . . . , R} do

for i ∈ {1, . . . ,M} do
confreg

i = confi · regr

end for
modelr = SSFCM(X,F, α, {confreg

i })
persist {ur

i,s(i)}i=1,...,M membership values
from modelr

end for
for i ∈ {1, . . . ,M} do

derive conf⋆i according to (4)
end for
return {conf⋆i }
Details of the iterative algorithm optimizing the objective

function Jc in SSFCM model fitting can be found in [2]. We
only provide below the formula for updating the membership
values in each iteration of SSFCM fitting:

ujk =
1

1 + α · confj
·
(
1 + α · confj ·

(
1− bj ·

∑K
s=1 fjs

)∑K
s=1

(
d2jk/d

2
js

) )
+

1

1 + α · confj
·
(
α · confj · fjk · bj

)
.

(5)
It is clear from (5) that the final value of ujk is an

interplay between the evidence coming from the observed data
and the strength of supervision. This supports our weighting
regularization assumption: even if we decrease the strength
of supervision, observations that are highly representative of
the supervised class should be still close to the corresponding
cluster centers and achieve high membership values.

The proposed CPR approach can be applied either when
(i) one does not assume anything about uncertainty, or (ii)
contextual knowledge is used to assign different default confi
values to different observations. In (i), ∀i confi = 1 is simply
assumed, and CPR will yield modified confidence factors.
The example of (ii) is psychiatric disease remote monitoring.
Partial supervision is frequently obtained by extrapolating the
label provided by the psychiatrist during a stationary visit onto
the data collected during a period surrounding the visit. In
such a case, one could assign gradually decreasing confidence
values for the data collected further from the visit. CPR
would then operate on such values and adjust them, potentially



increasing conf⋆i closer to 1 for these distant data that are
estimated to be highly representative of the supervised class.

IV. RESULTS

A. About dataset and labeling

We illustrate the performance of the proposed CPR method
for real-life sensors and psychiatric data about bipolar disorder
patients participating in a prospective observational study.
The data were collected from a dedicated mobile application
installed on patients’ smartphones. The application recorded
objective data, such as statistics of calls and text messages,
and acoustic features of patients’ speech. The latter were
extracted from the signal with the OpenSmile [26] software
installed on smartphones. In this work, we selected five voice
characteristics that describe different types of jitter, shimmer,
and spectrum of the signal (spectral flux and spectral cen-
troid). Observations xj ∈ R5 summarise specific calls. In
particular, each voice characteristic measure throughout the
call was summarized by the mean value. We will further use
interchangeably calls and observations to refer to xj in our
experiments.

Labels for partial supervision were obtained from psychi-
atric assessments performed during patient visits. In-depth
diagnosis consisted, inter alia, of CGI-BD categorization of
disease phase. Psychiatrists assigned one of {depression,
mixed, euthymia, dysfunction} labels at each visit that we
treat as the supervised class. In addition, doctors expressed
their opinion on how long the given phase has been present:
{days, weeks}.

For the purpose of the experiments, we chose data from
a single patient that had been assigned each of four CGI-
BD disease phase categories throughout the study. In total,
there were 1295 calls available. Extrapolation results for each
visit are summarised in Table I. Note that the number of calls
treated as supervised depends on the extrapolation strategy that
we describe in detail below.

We considered two strategies when extrapolating labels
from the day of psychiatric assessment to the calls surrounding
the visit: baseline (BL) and extended (EXT). In the BL
approach, all calls in an interval spanning from 7 days before a
visit up to 2 days after the visit were assigned the label with the
confidence factor equal to 1. In the EXT approach, we made
use of the contextual information about the duration of the
phase provided by psychiatrists. Owing to that, we considered
different confidence values gradually decreasing over the days
before the visit. A summary of confidence factors assigned
in BL and EXT approaches for the experiments is presented
in Table II. Each strategy (a, b, c, d, e) describes the rule for
assigning confi values for a call falling into the respective time
window in each of the approaches: BL, EXT (duration: days),
and EXT (duration: weeks).

BL extrapolation technique is frequently assumed in the
literature as the way of deriving ground truth period, see e.g.
[27]. Let us note the binary character of this method. If a call
is recorded 7 days before the visit, it is treated as a completely
confident supervised observation (confi = 1), whereas for a

Table I
TOTAL NUMBER OF SUPERVISED CALLS LABELED IN BL AND

EXT APPROACHES.

Visit Label Duration1 BL # data EXT # data

1 depression days 58 76
2 mixed days 55 68
3 euthymia weeks 85 182
4 dysfunction days 63 98

total 261 424
1 Duration of this mental state was assessed by the psychiatrist.

Options available: days, weeks. Providing this information was
not compulsory.

Table II
SUMMARY OF CONFIDENCE FACTOR VALUES ASSIGNED IN BL AND EXT

EXTRAPOLATION PROCEDURES.

time
window
identifier

time window1
confi

for BL

confi for EXT2

start end duration:
days

duration:
weeks

a -3 2 1 1 1
b -7 -4 1 0.5 0.5
c -10 -8 0 0.5 0.5
d -17 -11 0 0 0.5
e -21 -18 0 0 0.25

1 Time window is defined by start and end days relative to the visit day
spanning the interval [start, end] for a given labeling strategy.

2 EXT extrapolation approach differs for duration of the phase assessed
by psychiatrist.

call recorded 8 days before the visit no supervision is applied
at all.

Contrary to such a procedure, the EXT approach we propose
in this article allows for flexibility in terms of the initial
confidence factor values. Calls that had been recorded a long
time before the visit took place were getting lower confi
values to quantify uncertainty intrinsically related to this
extrapolation technique.

The strength of supervision for such calls was thus de-
creased as confi < 1. However, this impact can be increased
(or decreased) in a data-driven way as a result of the CPR
procedure. It shows the potential of combining the EXT
approach with the CPR procedure in handling label uncertainty
in semi-supervised scenarios.

B. Confidence path regularization

We considered six experimental scenarios to assess CPR
performance compared with non-adjusted semi-supervision.
The scenarios differed in terms of:

(i) label extrapolation strategy: BL or EXT,
(ii) confidence factor: nominal confi values or CPR-driven

adjusted conf⋆i values,
(iii) parameter α: default α from (2) relevant for given

extrapolation strategy (note that α depends on the number
of calls treated as supervised), or sensitivity α assessing
impact of changing α only. We perform sensitivity anal-
yses only for BL extrapolation, setting α to the value



Table III
ILLUSTRATIVE EXAMPLE OF CONFIDENCE AND ASSIGNMENT TO

CLUSTERS GIVEN K = 4 FOR TWO EXEMPLARY CALLS FOLLOWING
BL NOMINAL, BL ADJUSTED, EXT NOMINAL AND EXT ADJUSTED

SCENARIOS.

id confidence u1 u2 u3 u4 s(i)1

scenario 1) BL nominal (default α = 4.96)

359 conf359 = 1 0.08 0.87 0.03 0.02 2

1016 conf1016 = 1 0.99 0.01 0.0 0.0 1

scenario 2) BL adjusted (default α = 4.96)

359 conf⋆359 = 0.8 0.09 0.85 0.04 0.02 2

1016 conf⋆1016 = 0.52 0.95 0.04 0.01 0.0 1

scenario 3) EXT nominal (default α = 3.05)

359 conf359 = 0.5 0.18 0.7 0.07 0.05 2

1016 conf1016 = 1 0.98 0.02 0.0 0.0 1

scenario 4) EXT adjusted (default α = 3.05)

359 conf⋆359 = 0.77 0.06 0.82 0.09 0.04 2

1016 conf⋆1016 = 0.42 0.61 0.13 0.24 0.02 1
1 s(i) is an index pointing to the column from F matrix containing

supervised class for a given call. For each entry in the table, ui,s(i)
value was highlighted for greater readability.

obtained in EXT labeling approach (as more calls are
considered supervised in EXT strategy).

While the type of confidence factor (ii) and the value of
α (iii) are parameters of the SSFCM algorithm, the label
extrapolation strategy (i) is quite arbitrary and depends on
clinical assumptions made.

Below we describe six scenarios in more detail:
1) BL nominal (default α): BL scenario with nominal con-

fidence factor values, α = 4.96 set according to (2),
2) BL adjusted (default α): BL scenario with adjusted con-

fidence factors using CPR method, α = 4.96,
3) EXT nominal (default α): EXT scenario with nominal

confidence factor values, α = 3.05 set according to (2),
4) EXT adjusted (default α): EXT scenario with adjusted

confidence factor values, α = 3.05,
5) BL nominal (sensitivity α): similar to scenario 1, but with

α = 3.05 set to the corresponding EXT extrapolation
approach. This scenario serves as a sensitivity assessment.

6) BL adjusted (sensitivity α): similar to scenario 2, but
with α = 3.05. This scenario serves as a sensitivity
assessment.

Confidence regularization path consisted of R = 3
models with {reg1 = 0.1, reg2 = 0.5, reg3 = 1} and
{w1 = 10, w2 = 2, w3 = 1}. This choice is based on
simple reasoning: if the confidence factor is decreased 10 times
when multiplied by reg1 = 0.1, then the corresponding weight
w1 should be 10. If confi is decreased twice by multiplying it

by reg2 = 0.5, then w2 = 2. Finally, when no regularization
happens (reg3 = 1), then weight w3 = 1.

We provide an illustrative example of the experimental
results for scenarios 1-4 (default α scenarios) in Table III. The
table contains final membership values for two calls described
by unique identifiers: 359 and 1016. In the EXT labeling
approach, call 1016 was assigned conf1016 = 1, and call 359
was assigned conf359 = 0.5 since EXT approach treats calls
further from the visit day with decreased confi. Call 359 was
labeled as mixed, and call 1016 was labeled as depression.
Relevant rows from estimated partition matrix U are displayed
in Table III. In addition, the information about the confidence
factor used in the corresponding SSFCM model fitted, the
value of α, and the ground truth-based label are included in
the table. Note that in this setting, entries fik in matrix F
have values only in {0, 1}. Thus, the last column in Table III
points to the relevant index s(i) for i− th observation such
that fi,s(i) = 1. Specifically, for call 359 s(i = 359) = 1, and
for call 1016 s(i = 1016) = 2. The membership values of
the supervised class ui,s(i) are highlighted in blue for greater
readability.

In our experiments, we aim at discovering if scenarios that
are not adjusted for label uncertainty are consistently leading
to higher, less variable membership values than corresponding
CPR-adjusted counterparts. In Table III, one can see that for
call 1016, all scenarios apart from EXT adjusted (default
α) scenario resulted in very high degrees of membership.
It was only this scenario 4 that significantly decreased the
membership grade – down to u1 = 0.61 – providing insight
that label certainty of this call may be questioned.

On the other hand, for call 359, all scenarios led to high
membership values. It is worth noting the impact of CPR in
case of EXT scenarios for this call: the default conf359 = 0.5
in scenario 3 was increased up to conf⋆359 = 0.77 in scenario
4, leading to higher degree of membership as well.

While our method allows for detailed comparisons on the
level of individual calls, we focus on high-level evaluations
in this paper. Building on the illustrative example, we would
like to assess whether the CPR approach resulted generally
in more variable degrees of membership related to the su-
pervised classes. Fig. 1 presents overall distributions of such
ui,s(i) membership values for M supervised calls by each
scenario. We obtained them using Python seaborn pack-
age, specifically seaborn.violinplot function. It plots
a combination of boxplot and kernel density estimate (KDE),
allowing for effective comparison of multiple scenarios. In
the experiments, we used cut=0 option to prevent extending
density past the observed values. We also plotted black sticks
to present actual data points for greater clarity.

In all scenarios, CPR adjustment led consistently to higher
variance and lower measures of central tendency. It shows
that the CPR-adjusted confidence approach could differentiate
between highly certain and uncertain supervised calls, while
nominal procedure (without CPR-adjusting) was prone to tak-
ing the supervised labels for granted when estimating degrees
of membership.
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Figure 1. Comparison of ui,s(i) membership values for 4 ground truth-based
labels in each of scenarios 1-6. KDE distributions are presented by type of
the confidence approach: nominal (confi) or CPR-adjusted (conf⋆i ).

Fig. 1a and Fig. 1c assess the impact of α on differences
between nominal confi and adjusted conf⋆i in case of BL
scenarios with different α: the default one, and the sensitivity
one. Changing the default α = 4.96 to sensitivity α = 3.05
decreased the overall strength of supervision. In turn, higher
variability was observed in both nominal and adjusted ap-
proaches. The adjusted approach responded stronger to this
sensitivity analysis: the estimated distributions for each class
in scenario 6 cover approximately two times wider range of
membership values than in scenario 2, whereas for the nominal
approach the increase in variability in scenario 5 compared

with scenario 1 was relatively weaker.
Finally, Fig. 1b presents the true power of CPR. Let us

recall that scenarios 3 and 4 had already some variability
introduced into nominal confi values by the extrapolation
strategy. Confidence factors of 0.25, 0.5, or 1 were assigned
based on the contextual knowledge. Also, there were more
calls treated as supervised because of the mechanism of the
EXT approach.

Considering EXT nominal approach (scenario 3), estimated
distributions covered a wider range of degrees of membership
compared with nominal BL scenarios. Note that only some
calls labeled as euthymia were assigned membership values
< 0.5. This is an important experimental result that justifies the
need for confidence path regularization adjustment. Without
it, barely any supervised calls were assigned a degree of
membership < 0.5.

EXT adjusted (nominal α) scenario 4 generated membership
degrees spanning wider range of values. Fig. 1b shows that
there were many calls assigned values < 0.5 for every
class. Our method enabled differentiation between supervised
calls of high certainty and supervised calls of questionable
certainty. An interesting observation is that for mixed and
dysfunction categories the estimated degrees of membership
tended to cluster together, with fewer observations getting very
high membership values, while for depression and euthymia
categories the estimated values were uniformly distributed
across the whole spectrum of values.

This type of insight can lead to further exploration of
inter-class specific patterns that we explore below. We focus
on scenario 4 EXT adjusted (default α). We would like to
compare distributions of membership values of the supervised
class (i.e. ui,k=s(i)) with membership degrees of the rest of
the classes (ui,k ̸=s(i)) for each label category separately. Let
t ∈ { depression (D), mixed (X), euthymia (E), dysfunction
(DF) } denote a given label, and k(t) an index of the column
in F corresponding to the given label; k(t) = 1, 2, 3, 4 in
our experiments. Let also T denote a ground truth-based
label provided by partial supervision. Using this notation,
{uT

i,k(t)}i=1,...,M(T ) defines a set of membership values of
class k(t) for M(T ) supervised calls that were labeled with
category T . For example, {uT=D

i,k(t=D)} denotes membership
values of depression class for M(D) calls labeled as depres-
sion (D), and {uT=D

i,k(t=X)} denotes membership values of mixed
class for the same M(D) calls labeled as depression.

Fig. 1 compared membership values of the supervised class
ui,s(i) across scenarios, while Fig. 2 compares membership
values of the supervised class {uT

i,k(t=T )} with membership
values of the non-supervised classes {uT

i,k(t ̸=T )} across differ-
ent label categories T .

KDE distributions presented in Fig. 2 explain how clearly
membership values of the supervised class were separated
from other classes. For example, Fig. 2b presents a clean
separation for mixed label: these were mainly outliers from
classes other than t = X that achieved degrees of membership
greater than approximately 0.25. A similar situation was
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(a) Ground truth-based label T = D, M(D) = 76.

D
{uX

i, k(D)}
X

{uX
i, k(X)}

E
{uX

i, k(E)}
DF

{uX
i, k(DF)}

0.0

0.2

0.4

0.6

0.8

1.0

m
em

be
rs

hi
p 

va
lu

e

(b) Ground truth-based label T = X, M(X) = 68.
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(c) Ground truth-based label T = E, M(E) = 182.
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(d) Ground truth-based label T = DF, M(DF) = 98.

Figure 2. Each subfigure presents KDE plots of membership values {uT
i,k(t)

}, i = 1, . . . ,M(T ) for the supervised calls labeled as T . T denotes the
ground-truth based label, M(T) the number of calls labeled as T , k(t) denotes the index from matrix F corresponding to the given label t.

observed in Fig. 2d.
Contrary to that, Fig. 2a provides insight that supervised

observations from depression ground truth period were harder
to distinguish from other classes. Even though the distribution
of {uD

i,k(D)} was characterized by higher measures of central
tendency, the tails of distributions for other classes were heavy.
In consequence, many observations were getting high degrees
of membership to the classes other than depression. A similar
pattern follows for Fig. 2c.

One could try to form a hypothesis based on the results
presented in Fig. 2 that in this experimental setting, the
ground truth-based labels of depression and euthymia were
less separable in terms of label certainty, whereas mixed and
dysfunction membership values clearly separated calls between
highly representative of the relevant class and less so.

V. CONCLUSION AND FURTHER WORK

Uncertainty is intrinsically related to many labeling pro-
cedures, e.g. manual annotation of the data, or automatic
extrapolation. For this reason, crisp labels may not always
be suitable for statistical learning. Therefore, uncertain or
soft labels have been proposed in the literature, and semi-
supervised learning algorithms are gaining attention. Nonethe-
less, they often require a priori assumptions about the exact
level of uncertainty. Therefore, we introduced the Confidence
Path Regularization (CPR) method for automatic, data-driven
handling of label uncertainty in the semi-supervised scenario.

Specifically, the Semi-Supervised Fuzzy C-Means (SSFCM)
clustering algorithm was extended into a wider CPR frame-
work.

We presented a use case in bipolar disorder (BD) remote
monitoring. In this medical context, data about voice charac-
teristics collected from phone calls were gathered continually,
allowing for patient monitoring. Partial supervision was imple-
mented by extrapolating the psychiatrist’s assessment obtained
during the medical appointment onto calls from the surround-
ing period. SSFCM algorithm has already proven effective in
detecting the onset of the new disease phase. However, it also
introduced the inherent uncertainty and questions about viable
limits of the ground truth period commonly applied in the
literature.

In order to increase the number of labeled data while
controlling for the uncertainty, we introduced a concept of
extended extrapolation. Contrary to state-of-the-art, it assigns
lower confidence to the calls that were recorded further from
the visit. This way, more calls are treated as supervised with
varying confidence about the adequateness of the label.

The main result of this paper is the Confidence Path Reg-
ularization algorithm which adjusts default confidence factors
by fitting a series of models with varying regularization of the
default confidence. The resulting membership values from all
models are then weighted appropriately to reflect the strength
of regularization in a given model, and normalized. Adjusted



confidence factors obtained this way are used in the final
model to estimate membership values automatically corrected
for existing label uncertainty.

Results of the experiments on BD data showed that CPR-
adjustment was able to differentiate between highly certain and
uncertain supervised calls, while nominal procedures (without
CPR-adjusting) were prone to taking the default ground truth-
based labels for granted.

Future directions to improve the proposed approach include
different applications and research ideas. The first of them is
to extend the proposed approach to the online learning variants
of semi-supervised learning, such as the incremental semi-
supervised fuzzy clustering [28]. Another idea is to examine
the differences between certain and uncertain supervised calls
in the feature space to discover if any specific patterns exist.
In practice, to establish monitoring of the phone calls for
early detection of phase change, statistical process control
approaches could use only highly certain calls when modeling
control limits to be used. Finally, the concept of CPR seems
flexible enough to be introduced in other learning frameworks
than SSFCM.
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